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Summary. A general model for any type of genetic entry 
is developed which takes into account both the factorial 
model of gene effects and the ancestral sources, whether 
inbred lines or outbred varieties, of the genes. 

Utilizing the model, various genetic designs of fixed 
entries are explored for the estimation of genetic effects 
and the testing of genetic hypotheses. These designs con- 
sisted of  generation means - parents, crosses, various 
types of  backcrosses, and so on - stemming from one or 
more pairs of parents, and of hybrid combinations from 
factorial mating designs. Limitations, from the standpoint 
of genetic effects that can be estimated and genetic hypo- 
theses that can be tested, are developed in considerable 
detail. 

When entries from the factorial mating designs are con- 
sidered to be random, attention is focused on the estima- 
tion of  genetic variances, rather than effects, and on the 
concomitant changes in the tests of genetic hypotheses. 
While there is considerable improvement over fixed entries 
in the number of types of genetic variances that can be 
estimated, and of genetic hypotheses that can be tested, 
they are still very limited in contrast to what would be 
most desirable. 
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Preliminary: This paper was presented at the 7th International 
Biometric Conference. Since then it has come to various people's 
attention and I have been encouraged to give it a wider distribu- 
tion. Except for editing, the paper is essentially as originally writ- 
t e n .  

Introduction 

It is for estimation and hypothesis testing concerning gene 
action that I wish to review and compare some of the 
random and fixed entry approaches. Sometimes the breed- 
er is working with populations such as varieties which are 
near-equilibrium populations. In this case many forms of 
breeding lead to individuals which oan be considered to be 
random members of the population. The population then 
serves as a reference base with parameters for random 
members, and thus, the model for the individual with 
random gene effects. On the other hand, the breeder often 
has selected sets of material such as screened inbred lines 
or varieties, or such a varied collection of these, that it is 
hard to imagine that they could have any connection with 
some equilibrium population. Consequently, he tends to 
view his collection as a fixed set. Moreover, he may be 
interested only in possible derivatives of his material, and 
thus he has all of the genes of interest constituted in the 
material at hand, but of course not necessarily constituted 
in the best combinations. 

All the methods to be considered are based on a gen- 
eral factorial model of gene effects for an unknown, but 
generally assumed to be not small, number of genes. These 
quantitative methods are often criticized on the basis that 
they are not critical in contrast to Mendelian methods for 
identifiable genes. Nothing could be truer. Much of the 
variation of interest to the plant breeder, however, is due 
to variation in genes which have not been identified, and 
moreover, are not easily identified. 

On the other hand, some people appear to put great 
faith in quantitative methods, concluding and inferring far 
beyond the information available. Also, some methods 
simply do not provide the information asserted by the 
developers. I hope to develop and present some perspec- 
tive in these matters. 
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Models  

The factorial model ofgene effects (Kempthorne 1957)is  
reasonably complex even for genes at just two loci in 
diploids. It  is presented here to show the basis for a gen- 
eral model for any type of  genetic entry. 

Notation Description 

xi, xj, Yk, Yl Genes at locix  andy  

XiXjYkY / Genotype 

Model 

Gijkl =/.t Genotypic value -- mean 

Additive and Dominance Effects 

+ ( a  i + aj + dij ) 

+ ( a  k + a  t + d k / )  

+ (additive, a, and dominance, 
d, effects for locus x)  

+ (effects for locusy)  

[Epistatic (x by y) effects] 

+ {(aa)i k + (aa)u + (aa)j k + {additive by additive} 
+ (aa)jl} 

+ {(ad)ikl + (ad)jk/+ (ad)kij + {additive by dominance} 

+ (ad)/i j } 

+ {(dd)ijkt} + {dominance by dominance} 

I t  is convenient to summarize these effects, over an 
unknown number of  loci, for individuals or entries - 
crosses, backcrosses, selfs and other generations - under 
consideration. This can be done along the lines of  the 
factorial model of  gene effects and in a manner which is 
descriptive of  the genes as to their parental source. For 
additive effects we shall use .~(~iAi, where i indexes the 

1 
parental source (line, variety), all2 is the proportion of  
the genes in the entry under consideration from the ith 
source, A i is the sum of the additive effects for the genes 
in a gamete f rom a parent of  the ith source, .X c~ i = 2. The 

I 

corresponding term for dominance effects is ~ 8ijDij 
i<j 

where  ~ij(~ii) is the proportion of  genotypes with alleles 
from parents from sources i and j(i), Dij is the sum of  the 
dominance effects for genes from the mating of  a parent 
from source i with one f rom source j, and Z ~iij = 1. The 

i<j 

two sets o f  coefficients are related in that  

O~ i = 2(~ii -I- .~ ~ij, j :/: i. 
J 

It is only the 6's that  have to be formulated for each type 
of entry. Now, a general model for the individual or entry 
can be written as 

G =/a + X aiAi + X ~ijDij + ( i  ~ OtiAi) 2 + 
i i<j 

mean add. dora. add. by add. 

+ ( i  ~ ~ ( i~j  ~ijDij) + (i<~j ~ijDij)2 + . . . .  

add. by dom. dom. by dom. 

The epistatic terms are further expanded to express their 
full content. For example, 

( i  ~ otiAi) 2 = .~, ot 2 (AA)i  i + 2 i<~j o~io~ j (AA)i  j 

and the additive by additive effects are distinguished as to 
the source of  the genes. When coefficients such as 2 occur 
the effects are means of  two distinct effects; in (AA)i j for 
x genes from i with y genes f rom j and for y genes from i 
with x genes from j. When all effects are added up for an 
entry the total should be 

G =/a + 2A + D + 4(AA) + 2(AD) + (DD) + .. . .  

Some examples will clarify the procedure and at first 
we consider the indexed parents to be homozygous lines. 
For the cross of  parents i and j, 8ij = 1 and ai = aj =/iij = 
1. 

Gij = U + Ai + Aj + Dij + (AA) i  i + 2 (AA) i  j + (AA)jj -t- 

+ (AD)i(ij) + (AD)j(ij) + (DD)(ij)(ij) + . . . .  

I f  we let j= i, we get the correct result for the ith parent, 
either in application to the above model or via ~ii = 1, a i = 

2~ii = 2, 

G i = Gii = / / +  2A i + Dii + 4 (AA) i i  + 2(AD)i( i i  ) + 

+ (DD)(ii)  (ii) + . . . .  

Since the parents are homozygous,  self-fertilization pro- 
duces the same entry, G~ = G i. Now consider the progeny 
from randomly mating members of  the Gij , denoted Girj, 
or f rom selfing since the parents are homozygous. For G~j 
= Girj, (~ii 1 1 1 = 4, (~ij = 3,  ~jj = 4,  and the  a ' s  remain  un-  
changed,  of  course. For an additional generation of self- 

3 1 3 fertilization, GiSj s = Girj s, ~ii = i ,  ~ij = 4 and 6jj = i ,  the 5's 
following the well-known consequences of  inbreeding for 
any generation. 

Next consider a three-way cross from three parents 
�9 1 

Gi(jk ). For  this entry 8ij = ~ik = 3, ai  = ~ij -b ~ik = l , a j  
8 I I s _ = i j = 2  ' O~k = ~ik = 2 " If  the cross is selfed, Gi(jk),  (~ii - 
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6i j = 6i k I 1 = ~, 6jj = 6kk  = ~, b u t  with random mating o f  
members of r _ Gi(jk ) tO produce Gi(jk) ,  ~ii - 6iJ = 6ik = 7,  
6jj = 6kk  = ~ ' ,  ~jk = 8" F u r t h e r  inbreeding is a c c o m m o -  
da ted  by operating on the ~'s. 
t For a~ backcross,a Gt~tu~, just let k = i in  Gi(jk ) and 6ii  = 

~, ~ij = ~, ~i = ~, Otj = ~. 
Higher degrees of crosses are easy to accommodate in 

principle. For  G( i j ) (k l ) ,  ~ik = ~ i l  = 6jk = 6 j l  = 1,  arid a n y  
of the parents may be set to be the same for generating 
crosses involving common parentage. Some of those in- 
volving common parentage reduce to other entries, of 

course. For example, G(ii)(i i)  = Gi(ii  ) = Gii  = G i and  
_ r s 1 

G(ij)(ij) - Gij Gij. F r o m  the cross Gi(j(kl ) with 6ij 
~ik = 6it = ~ double and alternate backcrosses, and a host 
of other variations are easy to f'md. 

The procedure should be clear by now how one can 
quickly write models involving any type of generation 
mean from a set of homozygous parents. 

If the parents are not homozygous lines but are out- 
bred populations (such as varieties) the same model repre- 
sentation can be used for any of the crosses, backcrosses 
and so on, as long as individuals are mated at random in 
making the crosses and no deliberate inbreeding such as 
self-fertilization is imposed. To distinguish this situation, 
we use H instead of G and note that we have the same 
operational simplicity for H as G except for G s, i.e., H i = 

Hii = Hi(i i  ) = a ( i i ) ( i i )  or  H(ij)(i j)  = H[j and so on. With 
inbred parents we had GiSj = Girj, but this is not true of 
course for a variety. To take care of this feature for any 
I-1 s we introduce another type of 6, 6~, and another type 
of dominance effect D~i. Rules in this case are not quite as 
straightforward. In going from H to I-I s, the 8's for H are 

S ~  halved and the n e w  6ii S are apportioned appropriately as 
to parental sources as follows: 

A few other examples will illustrate the process. For Hij, 

~ij = land for I~ii, 6~i = 6~j = �88 = ~;for H~j,~ii= ~jj = 
1 - -  1 r s  1 1 S s I .  
4, ~ij -- 2 ,  and  for  H i j ,  ~ii = ~jj = 8, ~ij = 4,  ~i i  = 6jj = ~, 

1 s 1 
for Hi.0k), 6i~ = ~ik = 2 and  for  I~.(jk) , ~ij = ~ik = ~ii = 4, 
6~j = 8~k = i- If an entry is self-fertilized an additional 
generation the operation of halving the 6's and introducing 
6~i's is just repeated. 

Although the new dominance effects introduced into 
the model involve only the parental identifications, the 
model is considerably more complicated. Eberhart and 
Gardner (1966) accounted for additive and dominance ef- 
fects in their model for this situation by letting a i = 2A i + 
D~i i and d i = Dii - D~i. It seems preferable to maintain the 
model to correspond both with the factorial model of 
gene effects and the parental sources of the genes. While 
the model is overly parameterized, it is only in terms of 
the full model that one can explore estimable functions 
and the restrictions required to obtain estimators of cer- 
tain effects. While some people are uncomfortable with 
dominance effects for homozygous lines, and rightly so if 
considering only homozygous lines, the effects must have 
enough definitional generality to accommodate the vari- 
ety of genotypes to be encountered in the entire experi- 
mental population. 

The expansion of the model into epistatic effects does 
not give the correct coefficients for these effects for link- 
ed genes in entries from parents which are themselves 
crosses. There is no simple way of including linkages in 
the formulation because the epistatic coefficients involve 
polynomial functions of linkage parameters which vary 
over sets of loci for each type of effect and it is the 
average that is used. These linkages do not affect the addi- 
tive and dominance formulations. Linkage disequilibrium 
in parent varieties will also affect the results if there are 
epistatic effects but not with just dominance or additive 
effects. 

$ 1 1 s 3 
H i ~ i i = l  ~ i i =  ~ i i -  ~ ~ii = 7,  ~ i i = 7  

Hij 6 ij 1 ~ ij 1 s s 1 1 s _ ~,  6 i i = ~ i j j  7 6ij = = = = 7 ,  ~i i  - 

S 3 = 6jj - 

F i x e d  E n t r i e s  

For fixed entries one must cope with the specific effects 
for the genetic material at hand, whether in linear, quad- 
ratic, or higher order functions. 

The results for another generation of self-fertilization, 
I-I ss, are also given. In all cases .~ 8~i = F (the inbreeding 

1 

coefficient), 2~(8 + 8 s) = 1 and a i = 2(r + ~si) + .~ r (j 
J 

i). With selfing the model is more complex than for homo- 
zygous parents because of the introduction and expansion 
of D s terms, 

1 1 s + 4 ( A A ) i  i + + (ADS)i(ii) = / l  + 2 A  i + ~ Dii + ~ Dii (AD)i( i i )  

+ 1  (DD)( i i ) ( i i )  1 1 + ~ (DDS)(ii)(i i)  + 7 (DSDS)(ii)(ii) + . . . .  

Generation Means 

Two parents 

The simplest example is one suggested by Mather (1949) 
in terms of scaling tests, although the basis was inherent in 
the work by Wright (1922). The experiment consists of 
two parents, G 1 and G2, their cross, G12, and the next 
generation from randomly mating G 12 individuals (or self- 
ing if the parents are homozygous), G] 2" The models fol- 
low from the rules of the previous section. 
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G 1 =/a + 2A t + Dll  + 4(AA)I 1 + 2(AD)1(11) + ... 

G 2 =/a + 2A 2 + D22 + 4(AA)22 + 2(AD)2(22) + ... 

G12 =/a + A 1 + A 2 +D12 + (AA)I 1 + 2(AA)I 2 + (AA)22 + 

+ (AD)I (12) + (AD)20 2) + "'" 

Djl  D12 D22 
G~2 = b t + A  1 +A2+  ~ + ~ + - ~  + (AA)I 1 + 

+ 2(AA)I2 + (AA)22 + 

(AD)I(I I )  (AD)t (12) (AD)I(22) 
+ + + + 

4 2 4 

(AD)2(ll) (AD)2(12) (AD)2(22) 
+ + + + .... 

4 2 4 

The (AD) interactions are included to show how these 
and higher order interactions are involved. 

While this is a very simple example, it serves to illus- 
trate most of the problems encountered. One problem is 
estimability of main effects when there are interactions 
(Finney 1948). In our situation, each successive term after 
A involves interactions of the genes. As is usually the case 
for estimation, one must enforce some conditions on the 
parameters in an overly parameterized model. In this con- 
nection, it is convenient to distinguish between side condi- 
tions placed on a category and restrictions placed on sub- 
sequent categories for estimability, as did Elston and Bush 
(1964). Side conditions placed on A's such as A 1 = - A  2 
or A 2 = 0 do not affect the estimators of A since only the 
difference, A 1 - A 2, is estimable, but in general the re- 
strictions (conditions) placed on higher order effects af- 
fect the estimators of lower order effects. Restrictions are 
often said to be placed so that the effects apply to the 
population of interest. We have four distinct populations. 
The arbitrariness is best exemplified in the placement of 
the mean, which through restrictions can be made to cor- 
respond to any one or any combination of the popula- 
tions. 

I shall advance an arbitrary approach. The approach is 
to fit successively terms in the model by least squares, 
beginning with the first, tl, ignoring the remaining terms 
and adjusting for previously fitted terms; generally called 
the forward Doolitfle method. For the experiment under 
consideration, the side conditions A 2 = - A I ,  D22 = 
-DI2  = DI1 and (AA)22 = - (AA)I  2 = (AA)I 1 are im- 
posed at the appropriate stages, and the following ortho- 
gonal comparisons are found (hats denote observations 
and estimators): 

A ^ r  
Gt G2 G12 G12 
I 1 1 1 

1 1 
Z. z - 3  o o 

3 3 $ 1 
,-, r~ rr -r~ -rr 

I I 1 I (A A) ~ ~ ~, - 

We now take expectations of the estimators to see 
what functions of effects are involved, 

3 5 3 
~ =~t + AI + A 2 +  ~ D11 +g D12 + i~D22 +3 (AA)11 + 

s (AA)22 + + (AA)12 + 3 ... 

1 (A 1 _A2)  + 1 (Dr1 _D22 ) + 1 ~ = ~ ~ ~ [(AD)I(I O -  

-(AD)2(22 ) ] + ... 

= ~ (DI1-2D12 + D22) + ~ [(AA)I1-2(AA)12 + 

+ (AA)22 ] + 

1 
+ f f  [23(AD)I (11 ) - 22(AD) l (12) - (AD) 1 (22) - 

- (AD)2 ( 11 ) - 22(AD)2 ( 12 ) "{" 23(AD)2 (22) ] +"" 

"~" 1 1 
~(AA) = Z [(AA)I 1-2(AA)I2 + (AA)22 ] + ~ [(AD)I ( I D -  

- (AD) I  (22)-(AD)2(11) + (AD)2 (22)] + .... 

For the leading term in each expression to constitute 
the expectation, then all other effects in the expression 
must sum to zero. This does not in general seem reason- 
able. The mean is for the average of the four generations 
in the experiment. The additive estimator is influenced by 
dominance and epistasis, the dominance estimator by epis- 
tasis but not additive, and the epistatic estimator by epis- 
tasis alone. The method i '  designed to do just that. Any 
test of significance of the hypothesis &(^) = 0 is of course 
a function of the effects in &(^). Only the test of the last 
hypothesis ~(A~A) = 0 is invariant with the fitting proce- 
dure. 

An alternative procedure is to impose the same condi- 
tions as before, ignore effects of order (AD) and higher, 
and to fit the mean, additive, dominance, and additive by 
additive simultaneously by least squares. The results are 

t~* 0 0 0 I 
1 1 Z,, ~ _~ 0 0 

D* 0 0 - 1  1 

(A?A)* ~ 1 ~ 

r In this case the mean is for the G12, that is &~* = 
G~ Neither the additive estimator nor the additive by 

2" 

additive estimator has changed, .g,* = A and (AA)* = (:~A). 
The dominance estimator 
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l D22) I ~D*=~ ( D l l - 2 D I 2  + +~ [(AD)1(11) -2(AD)I (12) 

+ (AD) I (22) + (AD)2 ( 1 l) - 

--2(AD)2(12) + (AD)2(22) ] + "'" 

now does not contain additive by additive effects, which 
is an advantage over the elimination method. However, 
the estimator is still a function of epistatic effects of the 
order (AD) and higher. Further, the tests of gD* = 0 and 

^ 

&(AA)* = 0 are correlated. Given exactness of  the model 
fitted, tests of ~ ( ' )*  = 0 are uniformly most powerful. In 
some sense this is nit-picking since only categorical func- 
tions of  effects can be tested. This stems from the fact 
that the natural parameterization is much greater than the 
information available. 

An extension of the experiment is to include advanced 
generations by self-fertilization, G~s2 and so on, or back- 
cross generations: first G 1 (12), G2(12); double G 1 (1 (12), 
G2(2(t2); alternate G2OO2), G1(2(12); and so on; and/ 
or self-fertilized generations of each. Hayman (1958) dis- 
cusses the analysis in detail for a model including two- 
locus effects. By including more means, one can succes- 
sively eliminate and test for higher order effects - one 
degree of freedom for (DD) if the two first backcrosses 
are included. There are decreasing returns from including 
additional generations, which can be seen by looking at 
the general model in more detail. This model encompasses 
all entries if the two parents are homozygous, and all but 
the generations derived by self-fertilization if the parents 
are 'equilibrium varieties. 

G= p + {alA l +o~2A 2 } + {811Dll + (512D12 + 

+ ~22D22} + 

+ {(x2 (AA) 11 + 20t I ~ (AA) 12 + ~ (AA)22 } + 

+ {c~1811 (AD)I (11 ) + Ot1(~ 12 (AD)I (12) + 

+ 0t18 22 (AD)1(22) + a28 11 (AD)2(11) + 

+ 0~2~ 12 (AD)2(12) + 0t2~22 (AD)2(22) } + 

+ {821 (DD)(I t ) ( l l )  + 28 t 1(512 (DD)(I 1)(12) + 

+ 2611~22(DD)(11)(22) + 622 (DD)(12)(12) + 
2 

+ 2~ 12622 (DD)(12)(22) + 622 (DD)(22)(22) }+ .... 

Since ~11 + 812 + ~22 -'- 1 for each entry the maxi- 
mum variation in these is among the two parents and F 1 . 
The other generations represent averages of these. Include 
in addition the functional correlation among the coeffi- 
dents of different effects, most especially the fact that 0t i 
= 28ii + 8ij, and it is apparent that the successive elimina- 
tion of categories removes a large portion of effects in fhe 
categories remaining. Also, it should be obvious that t h e  

effects removed, including higher order ones, remain in 
the category of removal. 

One can clarify some of the functional relationships 
among the coefficients by reducing the model to a more 
manageable form through imposing restrictions on the ef- 
fects. One can also examine the consequences of doing so 
which seems worthwhile at this juncture. By imposing re- 
strictions of the form A 2 = - A  1 = A*, D22 = -D12 = 
Dt i = D*, and so on, 

G = ~* + a ' A *  + 8*D* + Qv*) 2 (AA)* + a*8* (AD)* + 

+ (8*) ~ (DD)* + ... 

where or* = 811 - 822 and 8" = 811 + 822 - 6t2.  
Another way of viewing the result is that we have trans- 
formed the 6's to a* and 8". That is, 

1 a* 8* 
~1=1+~ * ~ i ~ = ~ + ~ + ~  

1 8* 
a 2 = 1 -c~* 812 2 2 

1 c~* 8* 
8 2 2 -  4 2 +--4  

If we make these substitutions into the original model we 
now see the constitution of the starred effects in terms of 
those for the original model. 

#* 
Dll DI2 D22 

= p + A l  +A  2 + --'~-" + --~-- + ~ + (AA)It  + 

+ 2(A.A)I 2 + (AA)22 + ... 

1 
A* = A t - A  2 + -~ (Dlt  -D22 ) + 2[(AA)t I -(AA)22 ] + 

1 
+ ~ [3(AD)I(11) + 2(AD)t(12 )-(AD)t(22)  + 

+ (AD)2(I I) - 2(AD)2(12) - 3  (AD)2 (22) ] + "'" 

1 1 
D* = ~ (DII-2DI2 + D22 ) + ~ [(AD)IoI ) - 

- 2(AD)I (12) + (AD)I (22) § (AD)2 (1 I) - 

-2(AD)2(12 ) + (AD)2(22) ] + ... 

I 
(AA)* = (AA)I 1 - 2(AA)I 2 + (AA)22 + ~ [(AD)t(11) -- 

-- (AD)I (22) - (AD)2(I 1) + (AD)2(22) ] + ... .  

These are sufficient to illustrate the procedure and the 
results. The leading term for each starred effect is of 
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course a function of effects with the same nomenclature, 
and the additional effects are of higher order interactions. 
The results may be viewed as a confounding of higher 
order effects. Nevertheless, the results show the influence 
on lower order effects of imposing restrictions on higher 
order effects. There is of course no good solution to the 
problem where the number of parameters exceeds the 
number of  entries, and in an entangled manner. The coef- 
ficients of the starred effects are now much less correlated 
than before for many sets of entries. The procedure of 
successive elimination or of  fitting effects simultaneously 
provides the same results as are obtained by operating on 
the general model. 

Another approach, Sentz et al. (1954), to the analyses 
of these generation means is to consider only the means of 
parents, and of pairs of backcrosses, and then place all 
entries on a scale of heterozygosity ranging from zero for 
the parents to one for Gl2 (ranked on/i 12)- 

0 0.25 0.50 0.75 1.00 

~[Gt +G2]  ~[Gt(l(12) G~2 ~[G1(202) GI2 

+ G2(2(1 2)1 + G 2 O O  2)1 

G~S2 ~IGI(I 2) 

+ G 2 0 2 ) 1  

G~r2 

Now, any deviations from linearity or differences 
among entries at the same level are due to epistatic ef- 
fects. One may partition the deviations from linearity into 
quadratic and so on, but which of course are no more 
informative than the model estimators. This approach 
overlooks certain comparisons such as G l ( x 2) - G 2  (12) - -  

[G 1 - G2]]2 which are functions of only epistatic effects. 
Except for these omissions, it provides the same compo- 
site test for epistasis. The method, of course, is directly 
related to that for inbreeding depression. 

The effects of inbreeding, in particular self-fertiliza- 
tion, were summarized by Anderson and Kempthorne 
(1954). If we abstract out just successive generations from 
self.fertilization, the following expression holds in the ab- 
sence of linkage, 

S t = S 2 - F t D + F~ (DD) - Ft 3 (DDD) + F~ (DDDD) - . . .  

whether the inital population is a single individual (S 1 = 
Gl2 ) or an equilibrium population (S 2 = H). (t indexes 
the generation and F t is the inbreeding coefficient relative 
to F 2 = 0, F 1 = -1 . )  Without epistasis there is a linear 
relationship among the generations, which is the same re- 
mit as scaling entries according to level of heterozygosity 
because F measures relative degree of heterozygosity. 
Tests for epistasis are for deviations from linearity, but 
the limitations of the tests can be readily seen in this 
example since (1) only all dominance types of epistasis are 

involved, and (2) these effects are sums with all sorts of 
cancellation possible. 

When the two parents are equilibrium varieties, self 
generations of each and of their Hi2 and H~2 may be 
included in the experiment (Robinson and Cockerham 
1961). Without the self generations the model is that 
given for homozygous parents, but with selfing, additional 
dominance terms must be introduced. Only dominance 
effects are included in the following table. 

Original entries Self entries 

H I : Dtl 
H 2 : D22 

H~ s : (D,, + D~S,)/2 

Hi ~O2~ + OL)/2 

~(H~ + H  2) : Dt~ +D2~ ~ s s 
2 u + Ha) 

Ht 2 : Dr2 HS2 

Dr2 DIt + D22 rs 
H~2 : 2 + 4 Ht2 

Dr, + D22 D~st + DS22 

4 + ~  

Dr2 D s, + Ds2 

2 + 4 

D~2 Dr, + D22 D~, + D~2 
q - + ~ +  4 

Note that DIz - (D 11 + D22)/2 relates to heterosis, while 
(D~ 1 + D~2 - DI 1 - D22)/2 relates to inbreeding depres- 
sion, but these become categorical descriptions when they 
are estimated, and a function of just dominance only 
when there is no epistasis. 

If  one considers just the two by three table (below 
dashed line) there are three degrees of freedom to test for 
epistatic effects, two for rows by columns (entry by origi- 
nals vs. selfs) and one for quadratic effects among rows. 
Each includes additive by additive and higher order ef- 
fects. Including selfs of each type of entry from equilib- 
rium varieties does not increase the order of epistatic ef- 
fects that can be eliminated and tested but contributes 
additional degrees of freedom at each stage. 

Parents 

The most important extension of these experiments is 
to include entries from a set of parents, that is, the par- 
ental entries, and all other types of entries for each pair of 
parents, generally called a diaUel. A model encompassing 
any set of entries and a general analysis can be accom- 
plished by the regression approach, although with con- 
siderable tedium in many cases. Hayman (1957) con- 
sidered n homozygous parents and their n(n-1) /2  Gij's 
and G[j's. The parents could also be equilibrium varieties. 
After accounting for the mean, ( n - l )  additive terms and 
n(n-1)/2 dominance terms, there are n(n-1) /2  deviations 
to test for epistasis composed of all types. Actually, the 
parents can be omitted and there are then only n(n-3) /2  
deviations for epistasis. 

When the parents are varieties and selfs are included, 
the following analysis was given by Gardner and Eberhart 
(1966), except they did not include I-I~jS's. 
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Diallel analysis (Varietal parents) 

Source d.f. 

Mean 1 

Additive n - 1 

s _ Dii) n (Dii 
hij = Dij - (Dii + Djj)/2 n(n - 1)/2 

h i (n - 1)  

( h h ) i  j n ( n  - 3 ) / 2  

Epistasis 3n(n - 1)/2 

r s~  When the Hij s are not included n(n-1)/2 degrees of free- 
dom are lost in the epistatic term. The parents may also 
be omitted with appropriate modification of the analysis. 
Gardner and Eberhart (1966) distinguished between in- 
breeding effects (D~i - Dii ) (which could be partitioned 
into an average and deviations) and heterosis, hip which 
was further partitioned into an average, and parent devia- 
tions and interactions. These categorical distinctions are 
descriptive, whatever the explanation in terms of gene ac- 
tion. 

The experiments do not have to be confined to a dial- 
lel design but could be a factorial mating design between 
distinct sets of parents (Stuber and Moll 1969). One fits 
additive and dominance terms for each set. With Gij's and 
Girj's, it is the interaction of parents in the (2G[j - Gij ) 
table, with or without parents, that provides the devia- 
tions for epistasis. It is easiest to illustrate for a factorial 
mating design without parental entries. 

(2G~] - Gij) Table--Homozygous parents or varieties 

Parent 3 Parent 4 

D. + D3~ D~ + D44 
Parent l  t2+At + A ~ + ~  + . . .  u+A~ + A 4 + ~  + . . .  

D~2 + D3~ D22 + D~ 
Parent2 I . t+A 2 + A  3 + ' - I T ' - ' -  + . . .  ~u+A s + A ,  + ~ + . . .  

The same results are obtained for the (2I~i j - Hij ) table 
for varieties except the D's are DS's. In either case the 
interaction comparison provides a test for epistasis since 
the additive and dominance effects cancel out. 

Comments 

In summary to this section on generation means, one 
can use the approach of successive elimination of effects 
or of fitting simultaneously the same set of effects. In 
either case tests are of categorical effects which include 
higher order effects. The situation is actually worse than it 
appears on the surface, because the effects in the cate- 

gories are sums for an unknown number of genes and may 
be zero, or near so, from cancellation. These limitations 
can be severe for generations involving just a pair of par- 
ents, where the expectations of the particular epistatic 
comparisons may be zero yet there be lots of epistatic 
interactions among the genes. Hypotheses are limited to 
something like 'no demonstrable gene effects of certain 
types' rather than the more desired 'no gene effects of 
certain types.' I f  the test of  effects at any stage by elimi- 
nation is not significant, one cannot assume that the pre- 
vious categories are free of these effects. For example, the 
test for epistasis may be insignificant, yet the categorical 
additive and dominance effects be entirely a function of 
epistasis. The limitations on the hypotheses would be 
much less severe when the analysis is of combined genera- 
tions from several parents. In no case, however, are the 
estimators dependable for providing information about 
total gene effects or their subdivisions in the genetic mate- 
rial. The same problems of interpretation arise in the 
simultaneous fitting of effects. 

While the experiments should involve more parents at 
the expense of more generations of material, they do 
somewhat different things. For an experiment constituted 
with a fixed number of generations, increasing its dimen- 
sions by using more parents (whether they are included in 
the experiment or not) decreases the limitations on the 
hypotheses to be tested and increases the power of the 
tests, but leads to no additional estimable functions or 
changes in the hypotheses that can be tested. Increasing 
the number of generations increases the number of tes- 
table hypotheses, but in a diminishing returns way be- 

cause of the limitations in variation among the 6's. Just 
general tests for epistasis may be the most useful, since 
further partitioning and elimination of epistatic effects is 
accurate only for unlinked genes. 

In all of the experiments, the parents, whether in- 
cluded in the experiment or not, must be in Hardy-Wein- 
berg equilibrium. Homozygous parents are in this equilib- 
rium. There is a tendency to conjecture that just any in- 
dividual or collection of individuals may serve as parents. 
However, the comparison G~2 - (2G 12 + G11 + G22)/4 
may involve dominance when the two individual parents 
are heterozygous. Linkage equilibrium was also assumed. 
(Homozygous parents are in linkage equilibrium.) Lack of 
linkage equilibrium in the varieties would affect only the 
epistatic effects. 

Any time there are different types of entries they may 
have different error variances. Hayman (1958, 1960 and 
previously) and others have taken account of different 
error variances for each type of entry through a weighted 
least squares approach. This in principle mainly compli- 
cates the procedure, and chi-square tests are conditional 
on the estimated variances. An alternative, simple ap- 
proach is to do an unweighted least squares and to parti- 
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tion the entry by replication or entry by environment, 
whichever is to serve as error, sums of squares into por- 
tions to correspond exactly to those for entries, which are 
valid • for testing the corresponding sums of squares 
among entries, whatever the true variances are. Of course, 
the power of  tests is reduced in comparison to an overall 
pooled error, but the latter is not an acceptable alternative 
when the error variances differ to any extent. 

Whether to use inbred lines or equilibrium varieties as 
parents may be dictated by the experimental material 
available. A pair of equilibrium varieties may be so nearly 
alike that the only differences found are due to inbreed- 
ing, and thus no information would be available on epis- 
tasis. Homozygous lines also can be similar, but their dis- 
tinctness in genotype, with genes at frequencies of one, 
even when derived from the same population, suggests 
that they would generally be far superior to varieties in 
studies of  this type. While the formal formulation for the 
two are similar it is emphasized again that the categorical 
effects are functions of gene differences in the material. 

Hybrids 

So far we have been concerned with pairwise combina- 
tions of genes among parents, which can be fractionated 
into various relative proportions of each parent by back- 
crossing, and each of these can be put further into differ- 
ent degrees of heterozygosity by random mating or self- 
ing. There is the logical extension to three-way combina- 
tions (crosses), four-way combinations, and so on, each 
with a multitude of possible backcross and randomly 
mated generations, and each of which may be further in- 
bred. A general formulation of the analysis for all these 
situations is of course impractical, but any particular ex- 
periment can be analyzed by regression analysis. There is 
merit in considering just the crosses, hybrids, because they 
are an integral part of many breeding programs, and be- 
cause they lend themselves readily to identifiable parti- 
tioning in accordance with the mating design model. 

While the parents could be varieties, there would seem 
to be no reason to use them, and we shall assume homo- 
zygous parents. Further, no parent shall enter more than 
once into any hybrid, to avoid backcrosses of any type. 

Bauman (1959) introduced an experiment involving 
three parents, one of which he called a tester G3, as a test 
for epistasis. The entries are G13 , G23 and G3(12), the 
latter being a three-way cross. Then, 

GI3 + G23 
2 - G3(12) 

can be used to test for epistasis. Actualiy, each parent can 
be used as a tester to the other two, and by including the 

other single cross G 12 and three.way hybrids G 2 (1 a) and 
GI (2 a), a combined test for epistasis with three degrees of 
freedom can be constructed. 

Eberhart (1964) and Eberhart and Gardner (1966) 
found that by considering a joint analysis of single, three- 
way and double crosses from four parents, they could 
separate out fifteen degrees of  freedom for epistasis, nine 
of which involved epistatic effects of an order higher than 
(AA). 

Rawlings and Cockerham (1962a, b) developed analy- 
ses for all possible three-way crosses and double crosses 
from a single set of parents. While these analyses were 
developed in terms of random effects, only when the ef- 
fects cancel out completely will they not appear in the 
expectations of mean squares. The analysis of three-way 
crosses provides tests for (AD) and higher order effects 
and that of the double crosses for (DD) and higher order 
effects. 

The crosses do not have to be those for a single set of 
parents, but can be factorial among different sets of par- 
ents. The models and analyses are much easier to demon- 
strate for distinct sets of parents, where genetic effects are 
more exactly identified with the design effects. Also, the 
analyses of factorial designs are straightforward. The same 
models are used for single sets of parents; just the analyses 
are more complicated. 

We shall designate the sets of parents A, B, C, ... with 
individual parents or lines as Ai, Bi, C k . . . . .  The same 
designations will be used for the design effects in the 
model for their progeny. The factorial mating design AB 
means the single cross progeny from mating each A i par- 
ent to each Bj parent. The design model is 

Gij = U +Ai +B i +(AB)ij 

and the design effects have the following translation in 
terms of genetic effects, 

A i = A i + (Ah) i i  + (AAA)i i  i + ... 

Bj = aj + ( )jj + (AAA)jjj + . . .  

(AB)0 = Dij + 2(hA)ii + (hD)i(ij) + (hD)i(ij) + 

+ (DD)(ij)(ij) + 3(hAA)iii + 3(AAA)iji + .... 

The coefficients of  certain effects are the number of dis- 
tinct effects in the average. For example, there are two 
additive by additive effects for the genes xiy j and xjy i 
which are averaged in (AA)i j. 

For three-way crosses consider the mating design 
A(BC), 

Gi(jk ) =/2 +A i +B i + C k + (AB)i j + (AC)i k + (BC)j k + 

+ (ABC)~jk. 
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The translation of the design effects is 

A i = A i + (AA)i i  + (AAA)i i i  + ... 

l x t (AAA)jjj + ... 

x 2 (AA)ij 1 1 (AB)ij = i Dij + ~ + i (AD)i(ij) + z (AD)j(ij) + 
3 1 3 (AAA)iij + ~ (AAA)ijj  + ... + Z (DD)(ij) (ij) + i 

2 (AA)ik + 3 (AAA)jIk 3 (AAA)jkk + (BC~j k = ~ w + ~ ... 

1 1 (AD)j(ik) + ~ + (aBC'-)ijk = 4 (AD)k(ii) + ~ (DD)(ij) (ik) 
6 

-I- ~ (AAA)ijk + . . . .  

For  C k and (Ac'~i k substitute k for j in Bj and (AB)ij, 
respectively. The numerators of the coefficients are the 
number of  distinct effects in the average. 

Double crosses, (AB) (CD), have more symmetry than 
three-way crosses. 

a(i j)(k/)  = b / + A  i +Bj + C k +D t + (hB)i j + (AC)ik + 

+ (AO)it + (BC)jk + (BD)jl + (CO)kl + 

+ (ABC-')ijk + (ABD)ij I + (ACD)ik l + 

+ (BCD)jkI + (ABCD)iikt 

1 X 1 (AAA)iii + A i = ~ A  i ' l - ~ ( A A ) i  i + ~  "'" 

3 3 (AAA)ijj + ... (AB)i j = ~ (Aa)i i + i ( iA i ) i i j  + -~ 
1 1 

(AC)i k = �88 Dik + -24 (AA)i k + ~ (AD)i(ik) -t-~ (AD)k(ik) 

1 3 ( h h h ) i i k  + + ~ (DD)(ik)(ik) + 
3 

+ ~ (AAA)ikk + ... 
1 1 2 (ACD)ikl = ~ (AD)k(i/) + ~ (AD)l(ik) + ]Z (DD)(ik)(it) + 

+ 6 (AAA)ikt + ... 
2 2 (ABCD)ijkl = i'g (DD)(ik)(jl) + i~ (DD)(il)(jk) + 

+ 0(AAA) + .... 

Interchangeable subscripts: A, B, C and D; (AB) and (CD); 
(AC), (AD), (BC) and (BD); and all three factor inter- 
actions. 

By adding over the effects and taking into account the 
number in the sums one can see that they always add to 
2A + D + 4(AA) + 2(AD) + (DD) + ... as they should for 
each progeny mean. 

The identification with the design effects simplifies the 
analyses, because one can readily see what the elimination 
of design effects eliminates in terms of gene effects. For 
single crosses the elimination of A and B effects eliminates 
all additive and some additive types of epistatic effects, 
leaving in the deviations (AB) all of the dominance and 
most of the epistatic effects. In three-way hybrids, one 
can eliminte successively additive, A + B + C; dominance, 
(JIB) + (AC); and additive by additive, (BC0; leaving in the 

remaining deviations, (ABC), additive by dominance, 
dominance by dominance and higher order epistatic ef- 
fects. Thus, one can test for three-gene and higher order 
gene interactions, but there is a cost in the removal pro- 

l t (DD), 3 (AAA)+ are left cess, because only ~ (AD), ~ ig ... 
in the deviations. The process should be clear now, and in 
the double crosses, one can eliminate all three-gene inter- 
actions and test for fourgene, (DD), and higher order in- 
teractions. 

Comments 

Considerable clarification is also available about the cate- 
gorical effects in each line of the analysis of variance. 
First, we can see the kinds of effects that are major con- 
tributors. It is correct, however, to say that A or B devia- 
tions are functions of just additive and additive types of 
epistatic effects? To do so is to restrict the interaction 
effects of  the model to sum to zero in the usual ways for 
arriving at the analyses, and consequently to force the 
same summation restrictions over their contents in terms 
of gene effects, and exactly so for this experiment. While 
the major contributors to each category are clarified, 
there appears to be no more real justification to assume 
the categories to be completely free of other higher order 
gene effects than in the analysis of generation means, al- 
though in the latter case the gene effects had no neat 
organization. 

There are a variety of  other designs. In an experiment 
where a set of parents is mated to three-way hybrids 
[mating design A(B(CD)] dominance by dominance inter- 
actions can be removed, with deviations of higher order 
effects. For the three-way and double crosses, there are 
three different orders or ways in which the parents can be 
combined, e.g., for three-way crosses, A(BC), B(CA) and 
C(BA). Unfortunately, the inclusion of different orders 
only increases the degrees of freedom for some of the 
tests and does not essentially alter the types of effects 
that can be eliminated or tested for. There can be other 
logical categorical breakdowns of the effects such as A, 
(AB), (ABC) and so on as averages over orders and then 
interactions of these categories with orders. 

There are also many variations of the designs when sets 
of parents are common. When a single set of parents is 
utilized we have (AA) the diallel, A(AA) the triaUel and 
(AA)(AA) the quadrianel, these being the usual designs 
thought of for hybrids. The three different orders are re- 
quired in these designs for a reasonably simple analysis. 
There are a host of  other variations, A(BB), A(AB), 
(AB)(CC), and so on. 

The analysis given by Rawlings and Cockerham 
(1962a, b) for three-way and double cross hybrids was for 
average effects and effects by orders. The regression ap- 
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proach advocated here will lead to a different partitioning 
of some of the sums of squares, particularly for the three- 
way hybrids, but those for the higher order epistatic ef- 
fects can be left the same or pooled. 

Coanalyses of the different hybrid designs from the 
same sets of parents are also possible. The desirability of 
codesigns is a matter for investigation. The degree of epis- 
tatic effects for which one can test appears to be that 
available for the highest factor design. The inclusion of 
the lower factor designs provides more degrees of freedom 
for various tests, but again this may be at the expense of 
removing larger portions of the categories being tested. 

When analysis is of a single design, linkage does not 
cause the same problem as in the ease of generation 
means. Single crosses are not affected by linkage if the 
parents are homozygous, but they provide tests for only 
dominance and higher order effects. In the three-factor 
and four-factor designs each type of genetic effect is de- 
fined uniquely as to parents, and the effects can be writ- 
ten formally to include linkage parameters. Since the ef- 
fects are individually eliminated, the kinds of effects being 
tested for at each stage remain unchanged. That is not to 
say that linkage will not affect the results, but that the 
nature of effects being tested remains the same. The epista- 
tic effects are not the same from one type of hybrid to 
another from the same parents because of differing de- 
grees of  recombination, which is a disadvantage for code- 
signs. As far as just testing for epistatic effects, linkage can 
be ignored since the additive and dominance effects are 
not affected by linkage, as was pointed out for generation 
means. 

Random Entries 

So far we have been concerned only with gene effects as 
determined exactly by the genetic entries in the experi- 
ment. Quadratic functions (sums of squares or mean 
squares) are utilized as a means of making tests of certain 
composite hypotheses. Only the general nature of the 
gene effects in each case could be specified. Quadratic 
functions, on the other hand, provide a means for esti- 
mating the variances of these gene effects, or various com- 
ponents of  genetic variance, providing appropriate experi- 
ments and assumptions can be made. 

If parents, whether included in the experiment or not, 
are not assumed to be random samples, then quadratic 
functions have the same difficulties met with for linear 
differences and compounded with correlated gene effects. 
One may still want to estimate genetic variances in an 
advanced generation from a fixed set of parents. The same 
features are involved in the estimation of genetic variances 
in a population generated by a fluxed set of parents as in 
the experiments from random parents and these will be 
considered together. 

The estimation of genetic variances has been explored 
in considerable detail (Cockerham 1963). Only a few of 
the pertinent points will be presented. 

To be emphasized is that estimates are of variances and 
covariances of effects in populations from which the ex- 
perimental material are samples. The individual is the 
basic observational unit, whatever plot or other unit into 
which it may be summed or averaged, and it is the vari- 
ances and covariances of the various types of  individuals 
with which one must reckon. But to determine these vari- 
ances and covariances of individuals, gene distributions 
and effects, and thus variances, must be defined for mem- 
bers of each kind of population. Then one can, in prin- 
ciple, formally define the variance covariance structure for 
all individuals in the sample in terms of variances and 
covariances of gene effects. 

One assumption is made at the outset; linkage equilib- 
rium in the population (or populations for different sets) 
of parents. That is not to say that this property must hold 
for the parents in the experiment, but for the population 
from which the parents are samples. For example, the 
property cannot hold for genes differing at two loci for 
any specific pair of parents but can on the average for 
random pairs of parents. Linkage equilibrium of genes in 
the population of parents also insures linkage equilibrium 
of genes in the cross populations or other generations, if 
parents are mated at random. 

Linkage equilibrium refers to independence of genes at 
different loci. Inbreeding on the other hand causes cor- 
relations of allelic genes, and it was in this context that 
Professor Wright developed the inbreeding coefficient. 
Over different generations additive and dominance effects 
have different variances and are generally correlated. Har- 
ris (1964) found five quadratic functions required to ex- 
press the covariances of inbred relatives for any number of 
alleles at a tingle locus. The number of quadratic func- 
tions required to accommodate just two-locus interactions 
makes the situation unduly complex. Consequently, it 
does not appear feasible to estimate genetic variances and 
covariances from a joint analysis of generations, if one 
wishes to include any generality in the model such as 
two-locus epistasis. There is no difficulty in estimating the 
covariances among relatives, the difficulty is in the inter- 
pretation of these covariances. 

It is much simpler and more effective to concentrate on 
a single generation for the estimation of genetic variances 
(Cockerham 1963). The effects and variances are then de- 
fined for that generation but this is the problem that must 
be accommodated. Of the experiments considered for fixed 
entries, the hybrid designs are the most favorable for esti- 
mating genetic variances. We shall assume that parents in 
each set are samples from their respective linkage equilibri- 
um populations, and then reduce the results to those when 
all parents are from the same population. 
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The gene effects and their variances are defined in 
terms of the hybrid populations, conditional on the fre- 
quencies of  the genes in the parent populations, and for a 
model encompassing any number of alleles and loci. For- 
mal expressions of these variances, which have been given 
by Stuber and Cockerham (1966), will not be written, but 
various sums of variances indicated in expectations. 

For the A B  design first consider the analysis in terms 
of random design effects. 

S o u r c e  d . f .  E x p e c t a t i o n s  o f  
m e a n  s q u a r e s  

A parents n - 1 a24 B + ma2 A 

B parents m - 1 O~B + no~ 

A x B  ( n - l ) ( m  1) - o ~ B  

Since various gene effects were identified with the design 
effects, the expectations of  the design components of vari- 
ance are expanded, taking into account the coefficients 
and the numbers of  gene effects. Genes are all assumed to 
be independent so that all the effects are uncorrelated, 
and the square of any type of effect has an expectation 
equal to the variance of that type, 

OAg" = (02A + OA2 A + O ~ A A  + " " ) a  

OB2 _- (0 .  A + OA2 A + O ~ k A A  + " " ) B  

= 2 + 6 0 " ~ A A  + " " ) A B  O~B (O~ + 20~A + 20~D + O D D  

If the parents are from different populations, similarly 
designated components of the variance are not to be 
equated among rows. For example, O~A is the variance 
due to additive effects of  genes in the cross from parental 
population A. Parental population B may have genes at 
different frequencies. Thus the variances are defined spe- 
cifically into the three categories. It is arbitrary whether 
certain components such as the additive by additive be 

2 The coefficients were in- defined a s  2~ o r  OAAAB. 
cluded to indicate the result for all parents from a single 
population, in which case all variances of a type are sum- 
med into one. 

The usual method for arriving at these expectations is 
in terms of covariances of relatives (Cockerham 1963). 
Let C a be the covariance of individuals with only an A 
parent common and CAB of different individuals with 
both parents common. Then 

2 2 
C = a A 02AA + a B 02AB + a A o~ B ~  + a A  ~  + 

2 2 
+ a A a B 2 0 2 A A A B  + O~2B 02AAB + a a r B ~  + 

2 2 
+a2A a B O A D A  B +O~A a2B 2 O D D A B  + ... 

wherea  a = 1, a B = O f o r C  A ; a  a = O , a  B = l f o r C B ; a n d  

aa  = 1, a B = lfor CAB. The covariances are related to the 
design components of  variance as follows: 

2 o1=Ca, %=CB, O~B=CAB--CA--CB. 

Application of these covariances leads to the same expec- 
tations. 

When both sets of  parents are samples from the same 
population, then variances of  the same type are equatable 
and are summed into a total, e.g., o~a  = o~B = o~/2,  

a.~,AA = O~,AB = (20.~AAB)/2 = ~  and so on. Then 
the covariances of  relatives have their usual expression for 
a single population, 

2 ~2 

where a = (a a + an)/2 , 5 = aaaB,  and it is these covari- 
ances that are obtained in the diallel. 

More details on gene effects, variances and covariances 
of relatives in population crosses are given by SchneU 
(1965) and Stuber and Cockerham (1966). The parents do 
not have to be homozygous, in which case the appropriate 
results are obtained by adjusting a a and a B. 

We shall just outline the result for three-way hybrids. 
The analysis of  variance and expectations of mean squares 
for the design effects are the usual ones. 

Design A (nO 

Source d.f. Expectations of  mean squares 

A parents p - 1 ~ + n~ C + m~ + nm~ 

B grandparents  n - 1 O2AB C + po2BC + ma2AB + mpa~) 

C grandparents  m - 1 ~ + Pa2BC + na=A C + npo~, 

A x B (P - 1) (n - 1) OaABC + mOaAB 

A x C (P - I ) ( m  - 1) a=ABC+no2AC 

B x C  (n - 1 ) (m - 1) O=ABc+PO2BC 

A x B x C  ( p -  1 ) ( n -  1) ( m -  1) a2ABC 

2 _ 2 _ 2 ~ _ CA _ CB ~ A -CA,OB-CB, ac=Cc,  aAB=CAB 

a~c = CAC - C A - C c, a~C = Cnc - C~ - C c 

ff2AB C = CAB C - CAC - CAB - CBC + C A + C B + C C 

At the bottom of the table the design variance compo- 
nents are translated into covariances of relatives, where 
the common parentages of  the relatives are indicated by 
the subscripts. The general form for the covariance of 
relatives, 

2 o AA + aA % 20 AAB + + aA aC A C + aA 

2 02_AAB + a B  2 + a A a c 2 0 2 A A A c  + a B ot C O A A B c  + 

2 2 
+ a C O A A  C + ... , 
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becomes very complicated and involves powers and prod- 
ucts of  all three &s in CAB c. For this design a A = 1,a B = 
1 1 ~, a c = ~, and all a s except those with a subscript match- 
ing one for C are set to zero to find the covariance. The 
variances can also be found by taking expectation of the 
squares of the gene effects associated with the design ef- 
fects. 

O A 02A 2 = + O A A  + O ~ A A  + "'" A 

OAA O A A A  
2 + + + 

-i-ft  .-. B 
2 2 2 ,~ 

2 I O A  OAA 17AAA 
+-Tg-  + " ' )  
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The variances have been separated so that the denomina- 
tors correspond to products and powers of the Cs. 

When the parents are from the same population, the 
results may be expressed for total variances of each type 
in the same manner as for single crosses. Then, 

2 0t2 2 +0t~O~D +620.~)D +.,.  C = 0 ~ U ~ k + ~ U D  + O A A  

2 2 
2 OA OAA 

OA = T + --- ~ + - -  

2 2 
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where a = (a A + a n + at)~2, 8 = a A (a B + ac),  i.e., for 
CA, a = 1 , 6  = 0 ; f o r C  n andC o 1 a =z , / i  = 0 ; for  CAB 

3 1 �9 and C A o a = Z, 5 = ] ,  etc. This amounts to combining 
the genetic variance components of the same type and 
dividing each component by two to the power of the 
number of times that additive enters into its nomencla- 
ture. For example, 

2 
O A A A  

�9 "l- ... 
8 

30~AA 
+ . . . .  

The coefficients now represent the fractions of the total 
variances of each type in the population. 

The extension of the analyses to the other hybrid de- 
signs is straightforward but tedious. Coanalyses among the 
designs from the same sets of parents are also possible. In 
particular, when the parents are samples from the same 
population, the covariances of all hybrids can be ex- 
pressed as linear functions of components of genetic vari- 
alice.  

An additional assumption of no linkages has been as- 
sumed in some cases. Linkages do not affect the single 

2 cross results, or o A in design A(BC). Linkages affect only 
the coefficients of the epistatic components and operate 
always to make the coefficients larger than those given. 

Comments 

One test of  significance, that for the highest order effects 
for each design, is always the same for random or fLxed 
effects. Here, the two procedures diverge. Genetic hypo- 
theses that can be tested are confined to those for the 
design components of variance. Thus, there is still limited 
flexibility. One cannot, for example, test for additive or 
dominance variance alone because epistatic variances are 
always included. One can test for all additive types of 

2 2 2 in design A(BC) or OAB and OCD epistatic variances, Osc 
in design (AB)(CD). While all tests are of interest, some 
are more so than others. 

When the parents are from the same population, and 
there is only one component of genetic variance of each 
type, one may be inclined to test stepwise up the table, 
eliminating those variances in the hypotheses which 
turned out to be not significant lower in the table. TLe 
problems in this case are the usual ones in making tests of 
significance. 

One can now see for this model what gene effects are 
under test if just the error term were used to test each line 
in the table as would be the case for fixed effects. Indeed, 
the expectations of the mean squares involve functions of 
all types of gene effects except those previously elimi- 
nated. 

An appeal of genetic variances is that one can obtain 
information on the portion of the total variance con- 
tributed by each type of effect. Unfortunately, the esti- 
mators involve complex packages, as indicated in the tests 
of design components of variance. Other estimators, such 
as linear functions of the design components of variance, 
can be constructed, but which can be accomplished in a 
more comprehensible manner in terms of covariances of 
relatives (which are found as linear functions of the design 
components of variance). In any case there are only so 
many not wholly dependent quadratic estimators, the 
number being less than or equal to the number of design 
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components  o f  variance. One may restrict the genetic 
model to no more than the number of  types o f  genetic 
variances that  can be estimated. Alternatively, one may be 
satisfied to utilize estimators which are mostly additive, 
mostly dominance, mostly epistatic, and so on. Often not  
a great deal o f  confidence can be placed in the estimators 
when the standard errors are computed.  

General Comments 

The limitations in the tests for genetic effects in the analy- 
sis o f  generation means from a single pair of  parents are 
obvious. The limitations are less severe of  course in a jo in t  
analysis from several parents. Also, the parents do not  
have to be included, which is an advantage when one 
wants the information in terms of  reasonably outbred 
material as is often the case with normally outcrossing 
species and the parents are homozygous lines. Some in- 
breeding or backcrossing must be accommodated always 
to provide the different generation means unless one uses 
three or more way combinations (hybrids) of  parents. 

For  normally self-fertilizing species one may be more 
interested in the effects o f  genes as consti tuted in reason- 
ably homozygous states, but again some differences in 
inbreeding are required. Also, there is often difficulty in 
crossing and in particular obtaining enough Gij seed for an 
experiment. However, the (2G~ s - G~i ) table can be used 
to test for epistasis just  as illustrated for the (2G~j - Gij ) 
table, but  with smaller coefficients of  many of  the effects. 

One wonders about  the util i ty of  varieties in such stud- 
ies. Selected outbred varieties are often similar, but  di- 
verse collections can be put  together. The inclusion of  
selfs of  the varieties and their crosses allows the separation 
of heterotic  and inbreeding depression effects but  the in- 
clusion of  more varieties in the experiment at the expense 
of  the selfs may provide a better  test for epistasis, al- 
though with fewer degrees of  freedom for the same total  
number o f  entries. 

Where feasible, the three-way or higher degree hybrids,  
or in combination with the single crosses, have several 
advantages. They are all in the same noninbred generation. 
Gene effects are easily identified with the design effects, 
and the analyses are straightforward. Hybrids can be 
viewed from the standpoints of  both random and fixed 
effects. Even though it may be hard to conceive of  par- 
ental lines as a random sample o f  arbitrarily inbred lines 
from a randomly mating populat ion,  it  may be possible to 
view them as a random sample from a populat ion o f  se- 
lected lines in linkage equilibrium. There is certainly no 
harm in looking at the part i t ions of  genetic variance, al- 
though one may not  be able to set great store in them. 
They provide measures of  relative amounts in contrast  to 
presence or absence from tests of  significance. 
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